

The halogenoalkane 2-bromo-3-methylbutane reacts with hot ethanolic potassium hydroxide to form a mixture of two alkenes and an alcohol.

For the formation of each product, write a balanced equation, state the role of the hydroxide ions, name and draw the mechanism.

| Alcohol | balanced<br>equation     | $\begin{array}{cccc} CH_3 & CH_3 \\ CH_3 - CH - CH - CH_3 + KOH & \longrightarrow & CH_3 - CH - CH_3 + KBr \\ Br & & OH \end{array}$ |
|---------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|         | role of<br>hydroxide ion | nucleophile                                                                                                                          |
|         | mechanism<br>name        | nucleophilic substitution                                                                                                            |
|         | mechanism                | $CH_3 - CH - CH - CH_3$<br>Br                                                                                                        |

|          | balanced<br>equation     | $\begin{array}{c} CH_{3} \\ CH_{3}-CH-CH-CH_{3} + KOH \longrightarrow CH_{3}-C \longrightarrow CH_{3} + KBr + H_{2}O \\ \\ Br \end{array}$ |
|----------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|          | role of<br>hydroxide ion | base                                                                                                                                       |
| Alkene 1 | mechanism<br>name        | elimination                                                                                                                                |
|          | mechanism                | $CH_3 - CH_3$<br>$CH_3 - CH_4$<br>$H_0$ :                                                                                                  |

| Alkene 2 | balanced<br>equation     | $CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} H$ $CH_{3} \xrightarrow{CH_{3}} CH \xrightarrow{CH_{3}} H$ $CH_{3} \xrightarrow{CH_{3}} CH \xrightarrow{CH_{2}} H$ $CH_{2} \xrightarrow{CH_{3}} H$ $CH_{2} \xrightarrow{CH_{3}} H$ $H_{2}O$ $H_{3} \xrightarrow{CH_{3}} H$ |
|----------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | role of<br>hydroxide ion | base                                                                                                                                                                                                                                                                                |
|          | mechanism<br>name        | elimination                                                                                                                                                                                                                                                                         |
|          | mechanism                | $CH_{3} - CH - CH - CH_{2}$ $H_{3} - CH - CH_{2}$                                                                                                                                                                 |